1.0 GENERAL

The transmitter is a universal Din Rail mounted temperature transmitter that accepts most commonly used temperature sensors, slide wire transducers or millivolt signals and transmits them as a $4-20 \mathrm{~mA}$ signal to a host system. The unit can be programmed by the user from a selection of preset ranges selected by DIL switches or by the software package RCPW if required.

2.0 SPECIFICATION @ 24․․

2.11 RTD Input (Pt100)

Sensor Range Minimum Span
inearisation

Basic Measurement Accuracy² Thermal Drift
Excitation Current
Maximum Lead Resistance
Lead Resistance Effect Preset Ranges

2.12 Thermocouple Input

Notes. 1 Any span may be selected, full accuracy is only guaranteed for spans greater than the minimum recommended.
2. Basic Measurement Accuracy includes the effects of calibration, linearisation and repeatability.
3. Customer linearisation requirements are available
4. preprogrammed at the factory, contact your supplier for details
4. Consult thermocouple reference standards for thermocouple
material limitation.
5. FRI = Full Range Input

2.2 Output

Output Range
Maximum Output
Accuracy
Voltage Effect
Thermal Drift
Supply Voltage
Maximum Output Load

Protection

2.3 General

Input/Output Isolation Update Time
Time Constant (Filter Off)
Filter Factor Programmable Warm-up Time
Stability
Environmental
Ambient Operating Range
Ambient Storage Temperatu
Ambient Humidity Range
EMC
Emissions
Immunity
Mechanical
Material
Material
Flammability
Dimensions
Connections
Communications
PC Interface
Minimum Output Load
Maximum Cable Length Configurable Parameters

Comms Proto

Data Rate
$4-20 \mathrm{~mA}(<3.8$ to $>20.2 \mathrm{~mA})$
23 mA
$\pm 5 \mu \mathrm{~A}$
$0.2 \mu \mathrm{~A} / \mathrm{V}$
10 to 35 V
[(Vsupply -10)/20] K Ω
(eg 700Ω @ 24V)
Restricted to 300Ω maximum for inloop programming
Reverse connection overvoltage 35 V

500VAC rms (galvanically isolated 250 mS Maximum
< 1 Second (Time to reach 63% of inal value)
Off, 2 seconds, 10 seconds or Adaptive 2 minutes to full accuracy
-40 to $60^{\circ} \mathrm{C}$
-25 to $70^{\circ} \mathrm{C}$
10 to 90% RH non condensing
EN50081-1
EN50082-2
Din Rail mounted to fit Din EN 50022-35 ABS
SEI UL 94-VI
$90 \times 99 \times 18.5 \mathrm{~mm}$ Tension clamp two part terminals and 3.5 mm jack for comms

RS232 via configurator
250Ω for 'In Loop' programming (Available as quick selector or via PC) 1000 metres
Sensor type: Burnout: ${ }^{\circ} \mathrm{C} /$ ㅇF: Output: Available as "Quick Selector" or via PC: Hi/Lo: Filter: Tag: User Offset ANSI X3 281976 programming only) 1200 baud

2.4 Intrinsically Safe Applications

SEM215X
EMA Ex-98.E. 2215 X
EEx ia IIC T4...T6

Special conditions for safe use:- The apparatus must only be connected to intrinsically safe circuits with the following maximum values: Umax 30 V ; Imax - 100mA ; Pmax - 750 mW .
The apparatus must be housed in an enclosure which provides a degree of protection of IP20 for the terminals as per EN60529

3.0 INSTALLATION

3.1 Mechanical

The transmitter is designed to mount onto a standard Din Rail. The transmitter should be installed with adequate protection from moisture and corrosive atmospheres. The transmitter may be mounted in any orientation.
Care must be taken when locating the transmitter to ensure the ambient temperature remains within the specified operating range. Figure 1 shows the mechanical layout of the transmitter.

Figure 1

3.2 Electrical

Connections to the transmitter are made to the tension clamp terminals provided on the front face. Output signal wiring should use screened twisted pair. It is recommended that screened cable is used for the input signal wires for cable runs greater than one metre. For Pt100 inputs all three input wires must have the same core diameter to maintain equal resistance in each wire. If required the user may change the range of the transmitter by selecting one of the ranges from the table shown in section 3.3. Power must be switched OFF first. The selection switch is located at the rear of the transmitter between the Din Rail mounting

Figure 2

Figure 2 shows the method of connection to provide a 4－20 mA current loop output．The Pt100 sensor shown would normally take the form of a probe assembly with a three wire connection．The output loop has a voltage power supply used to provide loop excitation．The load symbol represents other equipment in the loop，normally indicators，controllers or loggers．Care must be taken when designing the $4-20 \mathrm{~mA}$ circuit to ensure that the total voltage requirements of all the equipment in the loop added together，does not exceed the power supply voltage．If a number of instruments are connected in the loop，ensure that only one instrument is fied to ground．Grounding the loop at two points will cause a short circuit of part of the loop leading to measurement errors．

To maintain CE compliance the transmitter should be mounted in an enclosure to prevent access to the transmitter during normal operation．

3．3 Preset Ranges

WARNING－Power must be removed before changing DIP settings．
SEM215
Sensor and temperature ranges may be prese using table shown below．

回回回回吅：mis．mom
Example right shows 1，2，3 DOWN，4，5，6 UP
12345678
RANGE
123456 CODE RANGE
123456 CODE

Computer Programmable \qquad Type K，IEC 584－3 BS 4937 Prog UUUUUU 00 Use this code to
RCPW software 0 to 100 UUDDDU 28 $\begin{array}{ll}0 & \text { to } 200 \\ 0 & \text { Do } 500 \\ 0\end{array}$ 0 to 500 UDDDDU 30
0 to 600 DDDDDU 31 0 to 600 DDDDDU $\begin{array}{lll}0 & \text { to } 800 & \text { UUUUUD } \\ 0 & \text { to } 1000 & \text { DUUUUD }\end{array}$ $\begin{array}{lll}0 & \text { to } 1000 \text { DUUUUD } 33 \\ 0 & \text { to } 1200 \text { UDUUUD } 34\end{array}$ 0 to 2400 DDUDDD 59

Type J，IEC 584－3 BS 4937 0 to 100 DDUUUD 35 0 to 150 UUDUUD 36 0 to 200 DUDUUD 37 0 to 400 UDDUUD 38 $\begin{array}{ll}0 & \text { to } 600 \\ 0 & \text { to } 2000 \text { UDUDDD } 58\end{array}$

Type T，IEC 584－3 BS 4937 -50 to 50 UUUDUD 40 -50 to 100 DUUDUD 41 0 to 100 UDUDUD 42 100 to 100 DDUDUD 43 0 to 200 UUDDUD 44 0 to 400 DUDDUD 45
Type R，IEC 584－3 BS 4937 0 to1000 UDDDUD 4

Type S，IEC 584－3 BS 4937 $\begin{array}{ll}0 & \text { to1600 } \\ 0\end{array}$

Type N，IEC 584－3 BS 4937 0 to 100 UDUUDD 50 0 to 200 DDUUDD 5 0 to 400 UUDUDD 5 0 to 600 DUDUDD 53 0 to 800 UDDUDD 5 0 to1000 DDDUDD 55

Type E，IEC 584－3 BS 4937 0 to1000 DUUDDD 57

Temperature units and Burnout Options may be preset using table shown below

emperature Units，Switch

Burnout，Switch 8 $\mathrm{U}=$
$\mathrm{D}=$
${ }^{\circ} \mathrm{F}$
U＝Low

Note．Switches 1－6 UP（RCPW）will overide this facility

Designed，manufactured and supported by

SATUS INSTRUMENS LD

Green Lane
Tewkesbury
Glos．GL20 8HD
UK
Sales： 01684853300
Support ： 01684853301
Fax ： 01684293746
Email：support＠status．co．uk

Every effort has been taken to ensure the accuracy of this specification，however we do not accept responsibility for damage， injury，loss or expense resulting from errors and omissions，and we reserve the right of amendment without notice．
Stock code ：52－214－2190－02

